Malaysian J Pathol 1982; 5: 45–47

FUNGAL ISOLATES IN OTOMYCOSIS

CS CHIN BSc(Hons)*

AND

M JEGATHESAN MBBS. MRCPath**

Summary

Mycological examination of 130 specimens of ear swabs and cerumen from suspected cases of otomycosis showed positive fungal isolation in 74.6%. Eight different genera of fungi were isolated. Aspergillus was the predominant genus isolated and Candida, the next. Of the isolates, only Epidermophyton floccosum is generally recognized as a human pathogen.

INTRODUCTION

Otomycosis, or otitis externa of fungal etiology, is a chronic or subacute infection of the pinna, the external auditory meatus and the ear canal. It has a world-wide distribution with a prevalence in tropical and subtropical regions. Etiological studies in many parts of the world have revealed that many fungi may be involved. As early as 1447, 53 different species had been implicated.2

Otomycosis is not an uncommon problem in Malaysia, but little has been done in the way of characterisation of the etiological agents. This report presents a review of the species of fungi isolated from suspected cases of otomycosis over a period of twelve years to allow some indication of the fungi that are encountered in otomycoses in this country.

MATERIALS AND METHODS

130 specimens of swabs, ear scrapings or cerumen were examined from 1969 to 1981. These specimens were submitted for mycological investigation for reasons such as ear-ache and pain, chronic ear infection, ear discharge not responding to antibiotics and suspicion of fungal infection.

Direct examination of ear scrapings or cerumen was performed in 30% potassium hydroxide while ear swabs were examined after Gram-staining. All specimens were inoculated onto duplicate tubes or plates of Sabouraud’s dextrose agar, Mycobiotic agar (Difco) and Sabouraud’s dextrose agar with the addition of 0.036% potassium tellurite or 0.05 mg/ml chloramphenicol. All cultures were kept at room temperature for three weeks. An isolation was considered significant only if the fungal growth coincided with the inoculation streaks and many colonies of the same fungus were obtained.

Ear swabs from 18 healthy people with no complaints of ear infection were also processed in the same manner.

RESULTS

Isolation of fungi was successful in 74.6% of the specimens examined (Table 1). There were eight specimens from which more than one fungus were isolated (Table 2), therefore resulting in a total of 107 fungi isolated from 97 positive specimens. All of the fungi isolated fell into eight different fungal genera (Table 3).

Aspergillus was the most frequently isolated. It was isolated in 78.4% of the positive specimens and accounted for 71% of all fungi isolated. Within the genus of Aspergillus, there were 24 isolates that were specifically identified as belonging to the Aspergillus niger group, while the rest were found to belong to Aspergillus fumigatus group (3); Aspergillus flavus group (4); Aspergillus ustus (2); Aspergillus terreus group (2) and Aspergillus ochraceus Wilhelm (1).

The genus Candida was isolated in 25.8% of the positive specimens and accounted for 23.4% of the fungal isolates. Most were not Candida albicans. Cunninghamamella, Epidermophyton floccosum, Penicillium, Streptomyces, Trichosporon and a true yeast (that was neither Candida nor Cryptococcus) were isolated once each.

In the 18 supposedly healthy people with no ear complaints, Paecilomyces was isolated in two. Both claimed later that they had unusual dampness in their ear canals. None of the 8 genera of fungi isolated from the cases of otomycosis were found in the healthy people.

DISCUSSION

The acceptance of otomycosis as a clinical entity has not been without controversy. While Kingery3

* Bacteriologist, Division of Bacteriology, Institute for Medical Research, Kuala Lumpur (Address for reprint request).
** Senior Bacteriologist, Division of Bacteriology, Institute for Medical Research, Kuala Lumpur.
TABLE 1
RESULTS OF THE ISOLATION OF FUNGI FROM SPECIMENS

<table>
<thead>
<tr>
<th>Total number of specimens examined</th>
<th>Number of specimens positive for fungi</th>
<th>Positive specimens (percentage)</th>
<th>Total number of fungi isolated</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>97</td>
<td>74.6</td>
<td>107</td>
</tr>
</tbody>
</table>

TABLE 2
THE FUNGAL TYPES ISOLATED IN POSSIBLE MIXED INFECTIONS

<table>
<thead>
<tr>
<th>Number of specimens</th>
<th>Fungi isolated</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aspergillus, Candida, Cunninghamella.</td>
</tr>
<tr>
<td>1</td>
<td>Aspergillus, Penicillium, Epidermophyton floccosum.</td>
</tr>
<tr>
<td>6</td>
<td>Aspergillus, Candida.</td>
</tr>
</tbody>
</table>

TABLE 3
THE GENERA OF FUNGI ISOLATED AND THEIR FREQUENCY OF ISOLATION

<table>
<thead>
<tr>
<th>Genera</th>
<th>Number Isolated</th>
<th>Isolation rate as percentage of positive specimens</th>
<th>Isolation rate as percentage of total fungal isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspergillus</td>
<td>76</td>
<td>78.4</td>
<td>71.0</td>
</tr>
<tr>
<td>Candida</td>
<td>25</td>
<td>25.8</td>
<td>23.4</td>
</tr>
<tr>
<td>Cunninghamella</td>
<td>1</td>
<td>1.0</td>
<td>0.9</td>
</tr>
<tr>
<td>Epidermophyton floccosum</td>
<td>1</td>
<td>1.0</td>
<td>0.9</td>
</tr>
<tr>
<td>Penicillium</td>
<td>1</td>
<td>1.0</td>
<td>0.9</td>
</tr>
<tr>
<td>Streptomyces</td>
<td>1</td>
<td>1.0</td>
<td>0.9</td>
</tr>
<tr>
<td>Trichosporon</td>
<td>1</td>
<td>1.0</td>
<td>0.9</td>
</tr>
<tr>
<td>True yeast (non Candida and non Cryptococcus)</td>
<td>1</td>
<td>1.0</td>
<td>0.9</td>
</tr>
</tbody>
</table>

dismissed the existence of otomycosis by stating that it has "something in common with the snakes of Ireland; there are none". McGonigle and Jillson⁴ referred to it as a "distinctive clinical entity". Some³ believe that abnormal conditions in infected ears favour the growth of fungi that are coincidentally present but are of no etiological association: others⁵ doubt that fungi are capable of producing primary inflammatory process, but accept them as secondary invaders; yet others⁶-⁸ believe that fungi can be primary agents of infection, causing inflammation by penetration into deeper portions of the ear canal. Despite the widely divergent opinions, the weight of the evidence in the literature points towards the existence of otomycosis as an entity." ⁶-⁸ However, it is estimated that not more than 15 to 20% of ear infections are otomycoses; the majority being bacterial in origin." In this present study, a laboratory diagnosis of otomycosis was made in 74.6% of specimens received. This indicates that the clinical present-
Fungi in Otomycosis

A high incidence of mixed infection by many fungal types was noted in a study by Youssef and Abdou. They found that it occurred in 28% of their cases. In this present series, only 7.3% yielded multiple isolation of fungi. Details of these isolations are given in Table 2.

The predominant causative role played by saprophytic fungi in otomycosis is characteristic of the infection. Therefore, laboratories must be cautious on the choice of media for investigating such cases. The unsuspecting may investigate a case of otomycosis using media that inhibit saprophytic fungi, as is generally done for investigation of other mycoses, and therefore fail to isolate the causative agent. A positive microscopic examination and the isolation of many colonies of the same fungus help to make a decision on the etiological significance of the isolate. As laboratory diagnosis of this mycosis is fast and simple to perform, cultural confirmation of all cases should be encouraged to prevent mismanagement and possibly relapses, and also to better the knowledge on the disease and the causative agents.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. GF de Witt, Director of the Institute for Medical Research, Kuala Lumpur for permission to publish this paper; Encik Abdul Wahab and Mr. CB Ng, former mycologists at the Institute, for their data used; Mr. SC Ong, KC Looi, Mrs. CT Ong and Encik Ismail Saat for technical assistance and Mr. YS Thean for typing the manuscript.

REFERENCES