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Abstract

Digital Twin (DT) technology, originally conceptualised in engineering, has recently emerged as
a transformative paradigm in healthcare, promising to redefine the generation, interpretation, and
application of biomedical evidence. DTs enable real-time simulation, prediction, and optimisation
of clinical outcomes. The review aims to clucidate how DTs may enhance methodological
efficiency, ethical standards, and strategic innovation in biomedical science, while addressing their
epistemological and regulatory challenges. A DT is a dynamic, data-driven virtual replica of a
biological entity or clinical process, continuously updated through real-time data to simulate, predict,
and optimise outcomes. Originating in engineering, DTs are now entering healthcare as enablers of
predictive, preventive, and precision medicine. Supported by Internet of Things (IoT) technologies,
cloud computing, and machine learning, DTs integrate heterogeneous data-genomic, physiological,
behavioural, and environmental-into adaptive models capable of mirroring and anticipating patient
trajectories. In clinical research, they enable synthetic control arms and in silico trials, reducing
recruitment barriers, improving statistical power, and addressing ethical issues associated with
placebo use. The recent qualification of DT-based methodologies such as PROCOVA™ by the EMA
and FDA confirms their growing scientific and regulatory credibility. DTs are redefining Medical
Affairs, strengthening its role as a bridge between data science and clinical practice. They enable
patient-level insights and personalised scientific communication, transforming Medical Affairs into
a predictive, data-driven discipline that supports evidence-based and patient-centered decisions.
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DIGITAL TWIN: THEORETICAL The foundational concept was theorised
FOUNDATIONS, MODELS, AND in the early 2000s by Michael Grieves, a
APPLICATION ARCHITECTURE IN University of Michigan researcher and Product
HEALTHCARE Lifecycle Management (PLM) expert. Grieves

et al. (2014) defined the DT as a structured
Conceptual Origins and Operating Principles set of virtual informational representations
capable of fully describing a physical artifact,
from the micro-atomic scale to its macroscopic
geometry.’ Ideally, all information obtainable
via direct observation of a physical object
could also be accessed through its digital
counterpart, making the virtual twin an equivalent
yet more accessible and manipulable tool.
Grieves et al. (2014) conceptualised digital
twinning as the synergy of three core components:
the physical twin, the DT, and the digital

The term Digital Twin was coined in 2010 by
NASA engineer John Vickers, but its conceptual
roots date back to the 1970s, when NASA
used physical replicas of spacecraft for ground
simulations, notably during the Apollo 13
mission.! These early efforts anticipated key
Digital Twins (DTs) principles: controlled
replicas, real-time data use, and enhanced
management of complex systems under critical
conditions.?
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thread—a three-tier architecture still widely
recognised as the conceptual basis for advanced
DT applications.?

* Physical Twin: A real entity, existing
or planned, ranging from industrial
products and humans to entire hospital
structures. Essentially, any tangible object,
system, or process can be associated with
a physical twin.

o DT: Its virtual counterpart, constructed
through computational models, data, and
algorithms replicating its behaviour. The
DT functions as an algorithm capable of
producing responses analogous to the
physical system under the same input
conditions.

* Digital Thread: The continuous,
bidirectional connection between the
physical and DTs. Beyond passive data
transfer, it enables dynamic interaction: the
physical twin feeds the DT with updated
data, which in turn provides insights,
predictions, and operational guidance.
While sometimes used interchangeably
with DT, the term Digital Thread more
accurately refers to the infrastructure
enabling synchronous coexistence and
interoperability between the two domains.

A further distinctive feature of the DT paradigm is
that the life cycles of the physical and DTs need
not coincide. DTs can precede the physical entity
or persist beyond its lifespan, acting as dynamic
repositories for analysis and optimisation.*

Evolution of DT Models

The DT has evolved into increasingly complex
models, differing in autonomy, predictive
capacity, and interaction with the physical
counterpart.

« Static Twin: A basic digital replica
capturing the state of a physical system at
a specific moment using historical or rarely
updated data. It is descriptive, suitable for
documentation, analysis, or visualisation,
but cannot process real-time inputs.

* Mirror Twin (Functional Twin): Maintains a
unidirectional, real-time link with the
physical system, updating the digital model
continuously. It remains passive, unable
to autonomously process data or generate
actions.

e Shadow Twin (Self-Adaptive Twin):
Extends the mirror twin by actively
interpreting real-time data and adapting its
behaviour in response to system changes.
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It is reactive and adaptive, capable of
recalibrating based on observations.

* Intelligent Twin: The most advanced form,
integrating Al and Machine Learningto learn
from the environment, anticipate future
scenarios, make autonomous decisions,
and interact with other DTs or human
agents. It functions as a cognitive avatar
of the physical entity.>

From Industry to Healthcare: DT Adoption

DTs have become a central enabling technology
across high-tech sectors, including advanced
manufacturing, automotive, aerospace, civil
engineering, and complex system management.
They support smart design, lifecycle prediction,
predictive maintenance, and real-time monitoring
of critical infrastructure.

Inhealthcare, DT applications are emerging but
remain at an early stage. Current solutions cannot
yet integrate all individual patient characteristics-
genetic, biochemical, anatomical, lifestyle, and
clinical history-into a single sustainable digital
model.>*” In healthcare, a DT is a dynamic
digital replica of a physical entity or clinical
process, designed to replicate its structural and
functional characteristics virtually. Entities
can include patients, organs, medical devices,
or hospital infrastructure. Its key feature is
real-time updating through continuous streams
of clinical, biometric, environmental, and
behavioural data.>®

Enabling Technological Infrastructure
Implementing a healthcare DT requires integrating
diverse technologies for data collection,
management, analysis, and visualisation:
(IoT): networks of connected devices, including
wearable, environmental, or medical sensors,
collect real-time biometric and physiological
data, continuously updating the virtual model.

e Cloud Computing: provides scalable
storage and management of healthcare data
with encryption and privacy safeguards.

» Artificial Intelligence and Machine
Learning (AI/ML): enable advanced data
analysis, identify complex clinical patterns,
develop personalised predictive models,
dynamically adapt DT behaviour, and
support clinical decision-making.

* Modelling, Simulation, and Visualisation
Systems: software tools generate virtual
representations and allow interactive
exploration of the DT.>8



Data Sources
Healthcare DTs integrate multiple complementary
data sources:

e Structured Clinical Data: electronic
health records, lab reports, diagnostic
imaging, insurance documentation, and
pharmacological records.

« Digital Health Devices: smartwatches,
connected glucometers, wearable/
implantable/ingestible sensors capturing
real-time physiological, biological, and
behavioural parameters.

» Patient-Reported Data: self-assessments,
questionnaires, and symptom reports.

* Real-World Data: observational studies
and disease registries providing evidence
outside controlled clinical trials.

* Non-Clinical Data: environmental and
lifestyle factors, such as air quality,
consumption habits, and social media
activity, contextualizing patient behaviour.?

Logical Architecture and Representation Models
of the Digital Human Twin

DTs can be modelled at varying levels of
complexity, from the entire human organism to
specific systems (e.g., digestive or respiratory),
individual organs (e.g., the liver), or microscopic
components such as tissues, cells, organelles,
and even molecular structures. Disease-specific
twins, such as a digital liver affected by non-
alcoholic fatty liver disease, or models simulating
interactions with external agents like viruses,
also fall within this spectrum.

Composite DTs integrate multiple models to
provide a systemic, multiscale representation
of the biological subject. Instance Twins are
identical digital copies of a single individual, used
to test alternative clinical scenarios and compare
therapeutic strategies. Aggregate Twins group
in multiple instances across families, cohorts,
or populations-supporting large-scale and
epidemiological analyses.

The enabling technologies form the foundation
of the DT architecture, which is structured around
three core components: the physical entity,
the virtual model, and the digital thread. The
virtual twin is developed through advanced
computational modelling tools, while continuous
connection to the physical counterpart is
ensured by the IoT. Interactions occur across
multiple scales, integrating multimodal data-
genetic, molecular, environmental, social,
radiological, and clinical-throughout the
individual’s lifetime. The long-term vision for
healthcare DTs envisions continuously updated,
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personalised models evolving dynamically
with new measurement, test, or behavioural
change. Such models could integrate genetic,
physiological, environmental, and psychosocial
data to chronically enable predictive, preventive,
and personalised medicine, particularly in disease
management.’

DT vs. Traditional Predictive Models

Traditional clinical prediction relies on statistical
inference, deriving general conclusions from
limited datasets. Regression models, linear
or logistic, are commonly used to estimate disease
risk, treatment efficacy, or clinical outcomes
based on predefined mathematical assumptions
such as linearity, normal error distribution, and
independence among observations. These models
are interpretable and robust under ideal conditions
but struggle with big data environments
characterised by high dimensionality and
complex variable interactions.

Machine Learning (ML) offers a more
flexible alternative. As a branch of Artificial
Intelligence, ML algorithms autonomously learn
patterns and generate predictions from complex,
heterogeneous datasets, identifying relationships
often undetectable by traditional methods. The
DT synthesises two complementary paradigms:

* Adeductive (mechanistic) approach, based

on theoretical and mathematical models
describing human physiology across
scales, from molecular to systemic levels.

* Aninductive (data-driven) approach, typical

of ML, where models emerge directly

from data and adapt to individual patient

characteristics.
This hybrid framework allows the DT not only to
mirror a patient’s clinical state but also to predict
health trajectories, simulate disease progression,
and optimise therapeutic decisions. Thus, the
DT functions as a predictive, adaptive system,
supporting personalised clinical management
throughout the entire care continuum, from early
risk detection to treatment evaluation.’

DTS IN CLINICAL RESEARCH: ETHICS,
EFFICIENCY, AND INNOVATION

Fundamentals of Clinical Research

Clinical research is essential for advancing
biomedical knowledge, generating reliable
evidence on the efficacy, safety, and therapeutic
value of new interventions. It follows a
structured, phased approach:
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* Phase I primarily assess tolerability and
pharmacokinetics in a small cohort, often
healthy volunteers, to determine the
maximum tolerated dose and identify acute
adverse reactions.

* Phase II evaluates therapeutic activity
and safety in a targeted patient population,
optimising dosage for subsequent trials.

e Phase III tests clinical efficacy against
standard therapy or placebo in large,
multicenter, randomised controlled trials,
producing data critical for regulatory
approval.

* Phase IV, or post-marketing surveillance,
monitors long-term real-world use,
rare adverse events, and comparative
effectiveness across broader populations.

Each phase adheres to internationally recognised
ethical standards emphasising participant safety,
protocol transparency, and scientific rigor. The
integration of advanced biotechnologies and
information systems has enabled the design
of more targeted, efficient, and clinically
representative trials.'

Introduction to the Use of DTs in Clinical
Research

DTs hold significant potential for transforming
clinical research. Approximately 80% of
clinical trials experience enrolment delays, and
20% fail to meet recruitment targets, largely due
to challenges in identifying suitable participants
and the increasing focus on personalised
medicine, which narrows eligible populations.
These factors make traditional trials increasingly
costly and time-consuming.

DTs offer an innovative solution by creating
virtual replicas of real patients, enabling in
silico experimentation with multiple therapeutic
strategies. Such digital counterparts can function
as control groups, allowing early drug testing
in simulated environments while reducing both
patient risk and study costs. Unlike traditional
external controls based on historical or real-world
data, DTs provide individualised predictions,
estimating each patient’s outcome had they been
assigned to the control arm.

From an ethical standpoint, DTs may also
address issues arising in comparative trials,
especially when the experimental treatment is
potentially lifesaving, and a placebo or standard
therapy offers limited benefits. By replacing
or supplementing control groups, DTs could
preserve trial validity while avoiding patient
exposure to ineffective or harmful treatments.
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Although still in its early stages, preliminary
evidence suggests that DT-supported trials
could effectively address the main challenges
of clinical research, enabling the design of
smaller-scale studies with greater statistical
power, or recovering power in ongoing trials
affected by recruitment difficulties or high
dropout rates. 261112

Limitations of Public Documentation on DTs

To date, no publicly available case reports
describe the use of individualised DTs as
control arms supported by detailed quantitative
data. This lack of transparency stems from
multiple factors. Pharmaceutical companies
have initiated advanced DT projects, but most
results remain confidential due to industrial
secrecy or ongoing pilot phases lacking full
validation. In many cases, DTs are used
internally for strategic purposes, such as dosage
optimisation, adverse event prediction, or
clinical planning, without formal publication. As
a result, available documentation focuses
primarily on general technological descriptions
rather than quantitative evidence or direct
comparisons with real-world cohorts. Given
this context, the following section illustrates
a representative study that, while not a fully
individualised DT implementation, marks a
concrete step toward their clinical adoption.
Here, the term DT is used broadly to denote
the statistical simulation of virtual cohorts
derived from real-world data through predictive
modelling. The study demonstrates the feasibility
and adds value of integrating real-world evidence
and artificial intelligence to construct robust
synthetic control arms. While these results cannot
yet be generalised to fully personalised DTs,
they highlight a promising trajectory toward
individualised, data-driven clinical trial design."

Construction of a Synthetic Control Arm Using
DTs: The Case of Chronic Graft-versus-Host
Disease

Phesi, a company specialising in real-world
data analytics and predictive modelling,
developed a synthetic control arm (SCA) for
patients with chronic Graft-versus-Host Disease
(cGvHD), a long-term complication of allogeneic
haematopoietic stem cell transplantation
characterised by donor immune cell attacks on
host tissues. Standard first-line therapy involves
systemic corticosteroids, with 40-60% response
rates and significant side effects. Given the



complexity of cGvHD, patient heterogeneity,
and recruitment challenges, it represents an ideal
setting for DT-based trial innovation.

The study aimed to simulate the efficacy of
prednisone as standard therapy through virtual
DT cohorts, thereby eliminating the need for
new control-group recruitment. Using the Trial
Accelerator™ platform-containing data on over
61 million patients across 232,909 cohorts-
Phesi identified 2,042 patients with newly
diagnosed cGvHD who received systemic first-
line therapy. After data refinement, eight eligible
cohorts totalling 438 patients were included.
Efficacy was assessed via the six-month Overall
Response Rate (ORR), representing complete
plus partial responses. The mean ORR was
52.7%, ranging from 48% to 66% across cohorts,
with no statistically significant differences
between groups (x> = 4.66; p = 0.70). These
findings aligned closely with published real-
world data, which reports ORR values for steroid
therapy in ¢cGvHD generally ranging between
40% and 60%, confirming the validity of the
synthetic approach.’

Methodological Validation of the Synthetic Arm
Thestudy’s primary objective was methodological:
to assess whether a virtual cohort, aggregated
from heterogeneous real-world sources, could
replicate the reliability of a traditional randomised
control group. Despite using real clinical data,
this equivalence is not guaranteed, as real-world
datasets often suffer from inconsistencies,
missing information, and selection bias.
Building a “clean” synthetic arm that mirrors the
rigor of randomised trials requires standardised
endpoints, harmonised inclusion criteria, and
correction of temporal and geographic variability.
Here, artificial intelligence proved essential,
enabling automated patient identification,
data harmonisation, and construction of a
homogeneous, statistically valid synthetic
population comparable to conventional trials.

The study thus demonstrates the feasibility
of developing highly realistic synthetic control
arms using high-quality historical clinical data.
DTs emerge as ethical and efficient alternatives
to traditional placebo groups, particularly in
rare diseases where recruitment is challenging.
The strong concordance between simulated and
real-world outcomes suggests that, in the near
future, DT-based synthetic controls could gain
regulatory acceptance as valid tools for clinical
trial design and evaluation.'®
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Unlearn.AI: DT Generators

Unlearn.Al is a leading company that applies
artificial intelligence to clinical medicine,
aiming to transform the design and conduct
of clinical trials via DT technology. Its Digital
Twin Generators (DTGs) are advanced predictive
models designed to simulate the individualised
clinical trajectory of each patient.

DTGs are trained on patient-level data
from historical clinical trials and real-world
evidence, encompassing a wide range of clinical
variables, including biomarkers, demographics,
vital signs, symptomatology, and disease
progression. Essentially, DTGs are predictive
models built on large datasets of prior control-
group patients and comparable observational
data.

Given the complexity of biological systems,
no universal model exists; each DTG is disease-
specific, tailored to accurately represent the
clinical dynamics of conditions such as
Alzheimer’s disease, amyotrophic lateral
sclerosis, Parkinson’s disease, Crohn’s disease,
or type 2 diabetes. Upon enrolment in a trial,
baseline clinical data of a new patient (history,
imaging, physiological parameters) are collected.
The DTG then predicts the patient’s potential
clinical course under standard-of-care or no
intervention.

Experimentally, the patient’s DT can serve
as a synthetic control: while the real patient
receives the investigational treatment, the
twin simulates disease progression without
intervention. Comparing actual and predicted
outcomes allows assessment of treatment efficacy
without a traditional placebo group.'*!

The PROCOVA™ Methodology
Unlearn.Al developed PROCOVA™ (Prognostic
Covariate Adjustment), a statistical adjustment
strategy enhancing traditional analyses by
incorporating a powerful covariate: the
prognostic score. First, baseline data are used
to construct each patient’s DT, simulating the
hypothetical outcome under the control condition
(placebo or standard therapy). This generates
a prognostic score representing the expected
outcome in the absence of active treatment.
During the statistical analysis phase, the
prognostic score is included as a covariate within
a traditional regression model. This allows the
estimated treatment effect to be adjusted for
each participant’s individual prognosis. For
instance, if a patient was already expected, based
on their baseline characteristics, to achieve a
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favourable outcome regardless of treatment, the
inclusion of the prognostic score prevents this
improvement from being incorrectly attributed
to the experimental intervention. Conversely,
if a patient was “predicted” to deteriorate
but instead shows substantial improvement,
the observed change can be attributed to the
treatment with greater confidence. Prognostic
scores explain a substantial portion of natural
outcome variability, reducing background noise
and isolating treatment effects more clearly. This
improves statistical efficiency, enabling trials
with fewer patients to achieve equivalent power
or, at equal sample sizes, increasing the ability
to detect genuine therapeutic effects.'

Regulatory Validation by EMA and FDA

In September 2022, the PROCOVA™ metho-
dology received official qualification from
the European Medicines Agency (EMA) for
use as a primary analysis method in Phase II
and III clinical trials with continuous clinical
endpoints. In January 2024, Unlearn.Al also
received positive feedback from the U.S. FDA’s
Center for Drug Evaluation and Research
(CDER), confirming alignment with the EMA
assessment. The FDA recognised PROCOVA™
as compliant with current guidelines, deeming it
an accepted statistical methodology under
both EMA and FDA regulations. These
endorsements represent authoritative validation
of PROCOVA™’s scientific and regulatory
value, confirming it as one of the most advanced
statistical solutions currently available to
enhance clinical trial efficiency and accuracy.'

Operational Advantages of Integrating DTs in
Clinical Trials

The implementation of DTs in clinical research
offers substantial operational benefits across trial
design and execution:

* Reduction in patient enrolment. By
simulating individual patient trajectories
without intervention, DTs reduce the need
for recruiting patients into control arms,
lowering logistical burden, operational
costs, and ethical concerns related to
placebo or suboptimal treatments.

* Increased statistical power. The comparison
between the outcome observed in the real
patient and that simulated by their DT
allows for a reduction in inter-individual
variability. This enhances the ability to
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detect clinically meaningful differences
even in smaller sample sizes. Alternatively,
it enables an increase in study power at a
given sample size, thereby improving the
efficiency of evidence generation.
Optimisation of inclusion/exclusion
criteria. The ability to simulate different
population configurations allows for
the early identification of the most
relevant clinical characteristics, thereby
improving participant selection. This
targeted approach increases the likelihood
of obtaining clinically and statistically
significant results, while reducing
heterogeneity and enhancing the quality
of the study design.

Improved Multiple Ascending Dose
(MAD) studies. Early-phase studies
are required to identify the maximum
tolerated dose (MTD) and define
the optimal therapeutic range
for subsequent phases of development.
DTs enable the virtual testing
of individual responses to different
doses, identifying tolerability thresholds
and signalling potential adverse events
before they occur in reality. Evidence
generated from DTs can provide robust
guidance on whether to proceed with
drug development or to terminate the
experimental program early, thereby
limiting participants’ exposure to
unnecessary risks and containing overall
study costs.

Enhanced trial ethics. All patients receive
the experimental treatment without
being exposed to suboptimal therapies
or placebo, enhancing the fairness of
clinical trials. This increases study
appeal, facilitates patient recruitment, and
improves overall trial equity.

Time and cost efficiency. Robust,
validated virtual populations reduce
the need for large real-world control
arms, accelerating trial phases, lowering
administrative burden, and bringing
innovative treatments to patients sooner.
Accelerated and adaptive clinical research.
DTs facilitate timely interim analyses,
disease progression modelling, and
dynamic protocol adaptation based on
emerging data.®!!1214.16



INTEGRATING DT INTO PERSONALISED
MEDICINE AND MEDICAL AFFAIRS:

A STRATEGIC AND SCIENTIFIC
OPPORTUNITY

Personalised Medicine: Context and Potential

Personalised medicine is an emerging paradigm
aimed at delivering the right treatment to the right
patient at the right time, leveraging diagnostic
and therapeutic tools tailored to an individual’s
genetic, phenotypic, biomolecular, physiological,
and psychosocial characteristics. Unlike
conventional medicine, which relies on
generalised approaches, precision medicine
emphasises interindividual variability, enhancing
treatment efficacy, and overall healthcare
efficiency. However, current healthcare systems
often struggle to provide truly personalised
care, particularly in complex conditions such as
oncology, where diagnosis and treatment involve
multiple layers and high clinical heterogeneity. A
key challenge lies in the variability of therapeutic
response among patients sharing the same
diagnosis. This heterogeneity largely reflects the
discrepancy between the underlying biological
complexity, characterised by dysfunctional
interactions among thousands of genes that
vary significantly between individuals despite
identical diagnoses, and the current diagnostic
capacity, which remains limited to a small number
of biomarkers. Consequently, a single diagnostic
label may conceal diverse therapeutic needs.®!’

DTs in Precision Medicine

DTs can predict disease onset dynamically,
considering not only patient history but also
contextual factors such as environment,
time, and activities, facilitating a predictive
and personalised approach. They also
serve as decision-support tools, allowing
virtual simulation of multiple therapeutic
options to optimise treatment selection. A
comprehensive DT-based precision medicine
model involves identifying a patient-specific
pathological signal, generating multiple virtual
replicas integrating thousands of clinically relevant
variables, and testing various therapeutic scenarios.
The optimal treatment identified virtually is then
applied to the patient, enabling a scientifically
guided, individualised intervention.?”%?

Oncology: Optimising Therapy in Triple-
Negative Breast Cancer
A study published in NPJ Digital Medicine
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demonstrated that MRI-based DTs can optimise
neoadjuvant chemotherapy regimens in patients
with triple-negative breast cancer (TNBC).!8 The
study included 105 patients, each represented
by an individual DT. Model validation involved
comparing predicted treatment responses with
actual clinical outcomes. The model’s ability
to discriminate between two clinical outcomes-
complete pathological response (pCR) versus non-
response following chemotherapy-was assessed
using a ROC curve. Model performance was
quantified by the Area Under the Curve (AUC),
which reached 0.82 in this study, indicating high
predictive accuracy and suggesting that the model
can provide reliable and clinically meaningful
predictions of individual therapeutic response.
DTs were further used to simulate 128 alternative
clinically plausible chemotherapy combinations
(Adriamycin/Cyclophosphamide followed by
Taxol, A/C-T). While the observed pCR was
60.95%, DT-guided simulations suggested
alternative regimens could achieve pCR up to
85.71%, representing an absolute improvement
of 24.76%. Notably, 26 patients who did
not achieve pCR with standard therapy
were identified as potentially benefiting from
personalised regimens.'®

Broader Clinical Applications

While oncology provides an ideal context to
exploit the predictive power of DTs, their use
is expanding across multiple clinical domains,
highlighting their versatility and translational
value.

In cardiology, DTs simulate cardiac
electrical and mechanical activity, supporting
ablation planning, selection for implantable
devices, and arrhythmia risk assessment. In
neurology, they predict the progression of
neurodegenerative diseases such as Alzheimer’s
and multiple sclerosis and optimise antiepileptic
treatments. For chronic conditions like diabetes,
DTs enable continuous glucose monitoring and
real-time insulin dose adjustment, enhancing
patient self-management, and reducing
complications. In rehabilitation, DTs personalise
motor recovery protocols based on patient-
specific musculoskeletal responses. In surgery,
DTs allow the simulation of complex operative
scenarios, improving procedural planning, and
reducing complications.

DTs are also proving highly valuable in clinical
pharmacology and pharmacovigilance, enabling
the prediction of drug-related adverse events. A
notable example is the liver DT, constructed using
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mathematical models that integrate anatomical
and physiological knowledge with clinical and
pharmacological data. This model has been
employed to assess the risk of drug-induced
liver injury (DILI), providing an important
tool to support both drug development and post-
marketing safety monitoring.

Across these applications, DTs enable a shift
from standardised to truly personalised
medicine, anticipating, adapting, and
optimising clinical decisions based on each
patient’s unique profile. Computationally
validated models that identify potentially
more effective treatments for specific patient
subgroups also offer strategic insights for the
pharmaceutical industry, particularly in Medical
Affairs, bridging scientific innovation and
clinical practice.>®®

Implementation of DTs in Medical Affairs:
Impacts and Opportunities

Medical Affairs has emerged as one of the most
dynamic and strategically relevant functions
within pharmaceutical organisations, acting
as a critical bridge between research, clinical
practice, and patient needs. This evolution
reflects a broader transformation toward
evidence-based, personalised, and technology-
integrated healthcare systems. In this context,
Medical Affairs serves as a catalyst for scientific
translation, converting data into actionable
clinical insights.

In an era of data complexity and personalised
medicine, its strategic influence is expected to
grow further. Within this evolving landscape,
DTs offer significant potential to enhance the
impact of Medical Affairs, although their current
application in this domain remains at an early
developmental stage.'**

Optimising Evidence-Based Strategies

The integration of DTs represents a
methodological breakthrough in evidence-
based medicine, enhancing the capacity to
guide clinical, regulatory, and corporate
decision-making through transparent, validated,
and data-driven insights. These simulations
enable the generation of an advanced form
of real-world evidence (RWE), data derived
from unselected, often more heterogeneous
populations than those enrolled in registration
trials, thereby reflecting the complexity of real
clinical practice. The use of DTs allows for the
integration and expansion of evidence obtained
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from traditional studies, extending analyses
to patient groups frequently excluded from
experimental protocols, such as the elderly,
frail individuals, or those with comorbidities.
Moreover, by digitally modelling specific
subgroups, Medical Affairs can identify early
on the patient profiles most likely to respond
favourably, or to experience reduced tolerance,
to a given therapy, thereby providing concrete
support for treatment personalisation and clinical
appropriateness.

Furthermore, DT-based simulations can
explore alternative therapeutic scenarios,
such as variations in drug sequencing, dosing,
or combinations, that are ethically or logistically
unfeasible in traditional trials. When aligned
with scientific and corporate strategies, this
predictive capability provides a competitive
advantage, supporting the design of more
targeted, sustainable, and patient-centred studies.

In essence, DT adoption transforms the
notion of evidence-based strategy from a static,
retrospective framework into a proactive,
adaptive, and predictive model, capable of
generating real-time, patient-specific clinical
value.

Personalising Scientific Communication

In the context of precision medicine, personalising
scientific communication has become a key
strategic goal for Medical Affairs. DTs enable
the virtual representation of patient-specific
biological and clinical profiles, allowing the
creation of dynamic, data-driven scenarios that
illustrate treatment effects on individualised
cases. These simulations enhance scientific
materials and discussions by highlighting
differences in efficacy, safety, or tolerability
that are often obscured in aggregated trial
data. As a result, Medical Affairs can enhance
scientific dialogue with healthcare professionals,
strengthen credibility as a trusted scientific
partner, and convey complex data as intuitive,
context-driven insights, particularly valuable in
engagements with Key Opinion Leaders (KOLs)
and institutional stakeholders.

This approach proves particularly effective
in advisory boards and multidisciplinary
scientific discussions, where the availability
of interactive models fosters stakeholder
engagement, facilitates debate on clinical
rationales, and promotes shared reflection on
potential therapeutic implications. DTs thus go
beyond their role as analytical tools, becoming
advanced communication mediators capable of



conveying scientific content with greater impact
and clinical relevance.

In summary, integrating DTs into Medical
Affairs communication strategies allows a
shift from standardised information delivery to
personalised, interactive, and patient-relevant
scientific dialogue.

Clinical Decision Support

In an era marked by clinical uncertainty,
interindividual variability, and the proliferation
of heterogeneous data, personalised decision
support has become a central challenge for
healthcare professionals.

The application of DTs by Medical Affairs
proves especially valuable in complex cases,
such as frail, multimorbid patients or those
underrepresented in clinical trials, where
predictive models can:

o Identify the most appropriate
therapeutic strategy when clinical evidence
or guidelines are lacking

» Anticipate treatment efficacy and estimate
the likelihood of adverse events or
drug interactions, enabling comparative
assessment of multiple therapeutic options

* Dynamically adapt therapeutic pathways
based on real-time clinical evolution

Through this approach, Medical Affairs evolves
from a passive repository of information to an
active mediator between data science and clinical
practice, translating DT-generated simulations
into actionable, scientifically validated insights.
This model establishes an advanced, evidence-
based framework for precise and adaptive clinical
decision-making.

Contribution to Corporate Strategy
Therapeutic innovation advances rapidly,
demanding a sophisticated understanding of the
clinical and regulatory landscape. Within this
framework, Medical Affairs plays a pivotal role
in guiding corporate strategy, and DTs emerge as
high-value tools to support informed, evidence-
driven decisions through predictive simulations,
comparative analyses, and realistic modelling of
therapeutic responses.

By integrating and analysing heterogeneous
data sources, such as real-world evidence,
genomics, imaging, and digital patient profiles,
DTs enable:

1. Precise definition of target patient
populations and identification of
subgroups most likely to derive maximal
therapeutic benefit.
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2. Early prediction of differential efficacy
across population segments, supporting
evidence-based competitive positioning
and strategic development planning.

3. Identification of new therapeutic
opportunities, including off-label or
adjacent disease areas emerging from
simulated response patterns.

4. Exploration of potential indication
extensions based on simulated evidence,
guiding targeted clinical study design
and providing a robust rationale for
regulatory submissions.

Furthermore, DTs allow the simulation
of alternative sequencing or combination
strategies, optimising product use across its
lifecycle. This capability supports launch planning,
pipeline prioritisation, and the development
of differentiated, scientifically grounded
communication strategies—strengthening both
clinical and corporate value creation.

Competitive Differentiation and Innovation
Positioning

The strategic integration of DTs within Medical
Affairs functions as a catalyst for competitive
differentiation and innovation leadership in
the biomedical sector. By leveraging DTs,
pharmaceutical companies position themselves
at the forefront of digital and personalised
medicine, demonstrating a tangible commitment
to predictive, patient-centred care. Moreover,
DT-based simulations enhance the credibility
of products and therapeutic positioning, even
where traditional clinical evidence is limited
or immature. Presenting simulated data on
realistic patient profiles with individualised
response predictions supports clinical rationales
more authoritatively, differentiates the value
of the molecule, and enables persuasive,
scientifically grounded communication of
treatment benefits. In sum, adopting DTs is not
merely a technological choice but a strategic tool
for scientific branding, reinforcing innovation
identity, consolidating market position in digital
health, and generating reputational value.

LIMITATIONS, CHALLENGES, AND
ETHICAL IMPLICATIONS OF DT
IMPLEMENTATION IN HEALTHCARE

Technological and Operational Challenges

Intrinsic Complexity of Human Biology
Unlike mechanical systems with well-defined
components and standardised designs, the
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human body is a highly complex and dynamic
system. Everyone exhibits a unique health
profile shaped by interactions among genetic,
environmental, behavioural, and stochastic
factors, combining in unpredictable ways.
Developing high-quality predictive models
requires advanced computational architectures
capable of simultaneously representing multiple
interdependent clinical features and dynamically
adapting to physiological changes over time.

Data Acquisition and Integration

A major barrier to clinical translation and
operational deployment of DTs in healthcare
is the acquisition of accurate, synchronised,
and multimodal data. Potential sources include
electronic health records (EHRs), diagnostic
imaging, wearable devices, biosensors, and
genomic databases. However, these data are
often stored across heterogeneous platforms
with incompatible formats and structures. This
IT heterogeneity complicates interoperability
between systems, namely the ability to enable
coherent and secure communication among
diverse information sources. Challenges also
extend to the temporal synchronisation of
data streams, particularly when real-time
integration of continuous physiological signals
or dynamic clinical updates is required. The
lack of adequate IT infrastructure and shared
standards further exacerbates operational
difficulties, hindering the development of reliable
and timely updated digital models.

Data Quality and Accuracy

Beyond availability and integration, data
quality is critical for the efficacy of healthcare
DTs. Incomplete, fragmented, or inaccurate
data undermine model validity, leading
to misleading simulations and unreliable
predictive analyses. Quality issues may arise
from sensor malfunctions, background noise in
signal acquisition, or semantic inconsistencies
across datasets due to differing collection
protocols or coding systems. Longitudinal
patient data are especially important, as they
enable the DT to adapt to individual clinical
trajectories. However, such data are often
sparse, heterogeneous, or temporally incomplete.
Ensuring high standards of accuracy, consistency,
and traceability is therefore essential to support
robust, updatable, and clinically meaningful
predictive models.

Lack of International Standardisation
The widespread adoption of DTs in healthcare
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is hindered by the absence of globally accepted
standards for their design, implementation,
validation, and interoperability. Most DTs are
developed in isolated academic or industrial
settings, using their own formats and criteria,
limiting scalability, replicability, and cross-
institutional transfer.

Semantic and terminological inconsistencies,
such as heterogeneous clinical coding (ICD,
SNOMED CT, LOINC) further impede system
integration. International multi-stakeholder
initiatives involving regulators, healthcare
institutions, industry, academia, and civil
society are urgently needed. Organisations
such as the Digital Twin Consortium, the
Swedish Digital Twin Consortium, and the
European DigiTwins project are advancing
in this direction, but a global, healthcare-
specific standardisation framework remains
to be established. Shared frameworks
would facilitate DT development,
ensure transparency, enhance safety, and
promote equitable use.

Limitations in Methodological Transparency
Methodological transparency remains a critical
limitation for DTs in healthcare. Many models
rely on opaque machine learning or deep learning
algorithms (“black boxes”), making it difficult for
clinicians or researchers to interpret the rationale
behind predictions. Documentation on algorithm
structure, training datasets, validation metrics,
and update procedures is often incomplete or
absent, undermining reproducibility, verification,
and external review. Moreover, scientific
validation is frequently limited to small
experimental cohorts, lacking robustness for
real-world clinical applications. The absence
of a standardised framework for predictive
and clinical validation also impedes regulatory
approval and safe clinical adoption.

Legal, Ethical, and Governance Considerations

Data Privacy and Security

Healthcare DTs rely on large volumes
of highly sensitive personal data, including
medical history, diagnostic results, real-
time physiological parameters, genetic and
behavioural information. Ensuring access to
the health data required for DT functionality
without compromising privacy is a major
challenge. Healthcare DT infrastructures involve
the collection, analysis, and storage of sensitive
personal information, which exposes data to
potential unauthorised access, security breaches,



or misuse. Informed consent is critical: patients
must fully understand the implications, risks,
and purposes of sharing their data. Transparent
consent processes, compliant with regulations
such as the EU General Data Protection
Regulation (GDPR) and the US Health
Insurance Portability and Accountability
Act (HIPAA), are necessary to maintain trust.
Users should retain control over their data,
including the ability to limit sharing or withdraw
consent. Advanced security measures, such as
data encryption, secure storage and transmission,
and controlled access systems, are indispensable.
Establishing a secure, compliant digital
environment is crucial to safeguard data integrity
and ensure confidence in healthcare DT systems.

Data Bias and Health Equity

Current healthcare datasets often exhibit
systematic biases reflecting historical and
structural inequalities in medical research and
healthcare access. Common sources include
overrepresentation of specific demographic
groups, such as adult Caucasian males, and
underrepresentation of women, the elderly,
ethnic minorities, children, or patients with
complex comorbidities. Using non-representative
datasets in constructing human DTs risks
perpetuating these disparities, potentially
producing suboptimal or discriminatory clinical
recommendations.

Medical Skepticism and Legal Liability
Clinical adoption of DTs is hindered by physician
scepticism toward algorithm-driven decisions,
fuelled by concerns over diagnostic errors or
inappropriate treatments. In the event of predictive
or clinical errors, legal responsibility among
developers, technology providers, clinicians,
and institutions remains ambiguous. Clear legal
frameworks are essential to define accountability,
delineate roles, and establish obligations for
all stakeholders involved in the development,
validation, implementation, and clinical use
of DTs.

Redefinition of Normality and Risk of
Overmedicalisation

The adoption of DTs in healthcare enables a
paradigm shift in defining normality and
pathology by constructing high-resolution models
of individual physiology, integrating molecular,
phenotypic, behavioural, and environmental
data across the lifespan. This longitudinal
approach surpasses the limitations of sporadic
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measurements typical of traditional medicine,
allowing a more precise characterisation of an
individual’s “normal” parameters.

Traditionally, normality has been population-
based, defined through statistical averages and
reference ranges. DTs enable a personalised model
in which normality is relative to the individual’s
historical baseline. For example, continuous
blood pressure monitoring via wearable
devices may reveal circadian or lifestyle-related
variations, defining an “individualised normality”
that may deviate substantially from population
standards. Such hyper-personalisation, while
enhancing precision medicine, raises ethical
and clinical concerns. Health may no longer
be defined merely as the absence of clinically
detectable disease but as an adherence to an
individualised optimal functioning pattern.

This gives rise to the category of asymptomatic
disease, in which an apparently healthy individual
could be identified, based on data from their DT,
as being at high risk of developing a pathological
condition. In this context, what is considered
“normal” may be perceived as improvable,
opening the door to a medicalised interpretation
of human enhancement. Within a DT model,
health itself may no longer be regarded as the
absence of disease, but rather as a configuration
within a spectrum of possibilities, efficient or
“optimisable”.

In this scenario, health risks are conceptualised
not as a state of equilibrium but as a process of
continuous optimisation, potentially generating
implicit or explicit social pressures to intervene
on physiological states that are fully compatible
with normal life. For example, an apparently
healthy individual with a high genetic
predisposition to a disease (e.g., Alzheimer’s
in ApoE-4 carriers) could be labelled as “at-risk”
even in the absence of symptoms. This may
lead to anxiety, overdiagnosis, and preventive
interventions that are not always justified. From
a psychological perspective, it can significantly
affect self-perception, self-esteem, and mental
health. It is therefore essential to provide support
resources, such as psychological counselling, to
help individuals manage the emotional impact of
such detailed and evolving knowledge of their
health status.?6722!

DISCUSSION

Clinical Research and DTs: Between Simulated
Efficiency and Complex Reality.
The integration of DTs into clinical research
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promises to address structural inefficiencies
such as recruitment delays, rigid protocols, high
costs, and ethical challenges related to placebo
use. However, this pursuit of efficiency
risks oversimplifies experimental complexity.
Predictive models, however advanced, remain
in theoretical constructs rooted in historical
and selective data. Introducing synthetic control
arms into clinical settings effectively assigns
evidentiary value to outcomes that have not
occurred but are algorithmically generated.
Consequently, the very notion of evidence shifts
from the observation of clinical phenomena to
their plausible projection. The central challenge
is thus epistemological rather than technical: how
can medicine validate what has not happened but
holds predictive significance? How can fairness
and transparency be maintained when comparison
occurs not between real patients but between
lived experiences and digital simulations? The
future of clinical experimentation will hinge
on this tension between the verifiable and
the credible.

Toward a Medicine of Possibilities: Regulatory
and Narrative Implications

DTs function not merely as predictive technologies
but as generators of clinical possibilities,
simulating outcomes that, though unrealised,
can shape therapeutic and regulatory decisions.
In this emerging paradigm, the boundary
between observable evidence and hypothetical
scenarios becomes blurred. Regulatory bodies
and clinicians will increasingly face the
challenge of distinguishing between empirical
evidence and simulated prediction. The validation
of predictive models and the regulatory
acceptance of synthetic trial arms extend beyond
statistical soundness, implying a paradigm
shift: accepting algorithmic predictions as
decision-grade evidence redefines the epistemic
foundations of truth in medicine. This evolving
conception of clinical truth also reshapes the
physician-patient relationship. What is presented
as personalisation may risk becoming adaptation
to algorithmic logic rather than a genuine
response to human complexity.

Beyond Digital Replication: Between Apparent
Personalisation and the Risk of Over-Prediction.
Relying on DTs to continuously optimise clinical
pathways may reduce diagnostic and therapeutic
errors, yet it risks narrowing the space for
unpredictability, ambiguity, and individual
variability, core dimensions of human health.
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A key paradox emerges although DTs aim
to enable ultra-personalised medicine; they are
inherently built upon standardised algorithmic
structures. Patient data are quantified and
compared against large databases, producing
a form of “personalisation” that often reflects
a recombination of known parameters rather
than a genuine engagement with individual
complexity. Consequently, precision may come
to mean adherence to the model, rather than a
deeper understanding of the person.

The challenge ahead is not merely to refine the
predictive power of DTs, but to design models
capable of incorporating the unquantifiable,
the patient’s narrative, clinical ambiguity, lived
experience, and the essential uncertainty that
has always characterised medical practice.
Only by doing so can future medicine remain
both technologically advanced and authentically
human.

Medical Affairs and DTs: From Scientific
Validation to Cultural Mediation

Traditionally, the custodian of post-approval
evidence, Medical Affairs is now called
to validate predictive models, interpret
simulations, and guide the transition toward
data-driven medicine. This expanded role
requires a profound cultural shift: it is no longer
sufficient to communicate therapeutic efficacy;
professionals must contextualise predictive
outputs, discerning what is clinically plausible
from what is computationally optimal. Medical
Affairs becomes the mediator between the
language of algorithms and that of clinicians. Its
authority will increasingly depend not only on
data quality, but on its ability to question model
assumptions, recognise bias, and preserve the
diversity and complexity of real-world clinical
experience.

CONCLUSION

The DT paradigm in healthcare emerges at a
pivotal moment in contemporary medicine:
the shift toward predictive, adaptive, and
personalised models, where digital data no
longer merely accompany clinical practice but
can anticipate decisions, shape perspectives,
and sometimes guide therapeutic trajectories.
The aim of this work has not been to celebrate
these technologies, but to critically examine
their significance, applications, limitations, and
implications.

In clinical research, DTs offer solutions



to well-known challenges: methodological
complexity, recruitment difficulties, and the
ethical dilemmas associated with placebo use.
The creation of synthetic control arms, the
simulation of personalised therapeutic responses,
and the reduced reliance on purely observational
data open compelling opportunities, but also
new scientific responsibilities. Predictive
value does not equate to clinical value, and
reproducible simulations cannot replace real
patient experiences.

It is within this intermediate space, between
algorithm and decision, that Medical Affairs
assumes an increasingly central role, balancing
innovation, evidence, and sustainability. Its
evolution is both technical and cultural: Medical
Affairs must interpret, integrate, and communicate
predictive models while maintaining clinical
coherence and methodological rigor. DTs position
Medical Affairs as an active mediator between
scientific complexity and clinical applicability,
between digital models and therapeutic needs,
between the language of data and the language
of care.

Yet, like any transformative technology,
DTs carry structural, methodological, and
ethical vulnerabilities. They require large,
harmonized datasets, interoperable infra-
structures, and transparent, interpretable
models. Challenges remain in data fragmentation,
algorithmic opacity, and reproduction of biases in
clinical datasets. Without critical and responsible
management, simulation of risk perpetuating
inequalities rather than addressing them.

Adopting DTs also entails confronting a new
epistemological landscape, from lived reality to
modelled projections. Here, the personalisation
promised by predictive models can become
an algorithmic illusion, interpreting patients
through statistical configurations rather than their
unique individuality. The notion of normality is
also redefined: no longer a population average,
but a continuously monitored, optimised, and
potentially medicalised individual trajectory.

Ultimately, this work offers a clear-eyed
perspective on innovative but non-neutral
technology. DTs are powerful transformative
tools, yet they demand new competencies,
nuanced responsibilities, and constant critical
oversight. True progress will arise only if these
technologies are integrated into a model of
medicine that embraces complexity, relationality,
and uncertainty. In the end, care cannot be
reduced to a model-derived prediction, it is
foremost a human encounter, grounded in trust,
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shared decision-making, and respect for patients’
values, fears, and preferences.
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