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Abstract

Digital Twin (DT) technology, originally conceptualised in engineering, has recently emerged as 
a transformative paradigm in healthcare, promising to redefine the generation, interpretation, and 
application of biomedical evidence. DTs enable real-time simulation, prediction, and optimisation 
of clinical outcomes. The review aims to elucidate how DTs may enhance methodological 
efficiency, ethical standards, and strategic innovation in biomedical science, while addressing their 
epistemological and regulatory challenges. A DT is a dynamic, data-driven virtual replica of a 
biological entity or clinical process, continuously updated through real-time data to simulate, predict, 
and optimise outcomes. Originating in engineering, DTs are now entering healthcare as enablers of 
predictive, preventive, and precision medicine. Supported by Internet of Things (IoT) technologies, 
cloud computing, and machine learning, DTs integrate heterogeneous data-genomic, physiological, 
behavioural, and environmental-into adaptive models capable of mirroring and anticipating patient 
trajectories. In clinical research, they enable  synthetic control arms  and  in silico trials, reducing 
recruitment barriers, improving statistical power, and addressing ethical issues associated with 
placebo use. The recent qualification of DT-based methodologies such as PROCOVA™ by the EMA 
and FDA confirms their growing scientific and regulatory credibility. DTs are redefining Medical 
Affairs, strengthening its role as a bridge between data science and clinical practice. They enable 
patient-level insights and personalised scientific communication, transforming Medical Affairs into 
a predictive, data-driven discipline that supports evidence-based and patient-centered decisions. 
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DIGITAL TWIN: THEORETICAL 
FOUNDATIONS, MODELS, AND 
APPLICATION ARCHITECTURE IN 
HEALTHCARE 

Conceptual Origins and Operating Principles 

The term Digital Twin was coined in 2010 by 
NASA engineer John Vickers, but its conceptual 
roots date back to the 1970s, when NASA 
used physical replicas of spacecraft for ground 
simulations, notably during the Apollo 13 
mission.1 These early efforts  anticipated  key 
Digital Twins (DTs) principles: controlled 
replicas, real-time data use, and enhanced 
management of complex systems under critical 
conditions.2 

	 The foundational concept was theorised 
in the early 2000s by Michael Grieves, a 
University of Michigan researcher and Product 
Lifecycle Management (PLM) expert. Grieves 
et al. (2014) defined the DT as a structured 
set of virtual informational representations 
capable of fully describing a physical artifact, 
from the micro-atomic scale to its macroscopic 
geometry.3 Ideally, all information obtainable 
via direct observation of a physical object 
could also be accessed through its digital 
counterpart, making the virtual twin an equivalent 
yet more accessible and manipulable tool.  
Grieves et al. (2014) conceptualised digital 
twinning as the synergy of three core components: 
the physical twin, the DT, and the digital 
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thread—a three-tier architecture still widely 
recognised as the conceptual basis for advanced 
DT applications.3

	 •	 Physical Twin: A real entity, existing 
or planned, ranging from industrial 
products and humans to entire hospital 
structures. Essentially, any tangible object, 
system, or process can be associated with 
a physical twin. 

	 •	 DT: Its virtual counterpart, constructed 
through computational models, data, and 
algorithms replicating its behaviour. The 
DT functions as an algorithm capable of 
producing responses analogous to the 
physical system under the same input 
conditions. 

	 •	 Digital  Thread: The continuous, 
bidirectional connection between the 
physical and DTs. Beyond passive data 
transfer, it enables dynamic interaction: the 
physical twin feeds the DT with updated 
data, which in turn provides insights, 
predictions, and operational guidance. 
While sometimes used interchangeably 
with DT, the term  Digital Thread  more 
accurately refers to the infrastructure 
enabling synchronous coexistence and 
interoperability between the two domains. 

A further distinctive feature of the DT paradigm is 
that the life cycles of the physical and DTs need 
not coincide. DTs can precede the physical entity 
or persist beyond its lifespan, acting as dynamic 
repositories for analysis and optimisation.4

Evolution of DT Models 

The DT has evolved into increasingly complex 
models, differing in autonomy, predictive 
capacity, and interaction with the physical 
counterpart. 
	 •	 Static Twin: A basic digital replica 

capturing the state of a physical system at 
a specific moment using historical or rarely 
updated data. It is descriptive, suitable for 
documentation, analysis, or visualisation, 
but cannot process real-time inputs. 

	 •	 Mirror Twin (Functional Twin): Maintains a 
unidirectional, real-time link with the 
physical system, updating the digital model 
continuously. It  remains  passive, unable 
to autonomously process data or generate 
actions. 

	 •	 Shadow Twin (Self-Adaptive Twin): 
Extends the mirror twin by actively 
interpreting real-time data and adapting its 
behaviour in response to system changes. 

It is reactive and adaptive, capable of 
recalibrating based on observations. 

	 •	 Intelligent Twin: The most advanced form, 
integrating AI and Machine Learning to learn 
from the environment,  anticipate  future 
scenarios, make autonomous decisions, 
and interact with other DTs or human 
agents. It functions as a cognitive avatar 
of the physical entity.5,6 

From Industry to Healthcare: DT Adoption 

DTs have become a central enabling technology 
across high-tech sectors, including advanced 
manufacturing, automotive, aerospace, civil 
engineering, and complex system management. 
They support smart design, lifecycle prediction, 
predictive maintenance, and real-time monitoring 
of critical infrastructure.
	 In healthcare, DT applications are emerging but 
remain at an early stage. Current solutions cannot 
yet integrate all individual patient characteristics-
genetic, biochemical, anatomical, lifestyle, and 
clinical history-into a single sustainable digital 
model.2,4,7 In healthcare, a DT is a dynamic 
digital replica of a physical entity or clinical 
process, designed to replicate its structural and 
functional characteristics virtually. Entities 
can include patients, organs, medical devices, 
or hospital infrastructure. Its key feature is 
real-time updating through continuous streams 
of clinical, biometric, environmental, and 
behavioural data.2,8 

Enabling Technological Infrastructure 
Implementing a healthcare DT requires integrating 
diverse technologies for data collection, 
management, analysis, and visualisation: 
 (IoT): networks of connected devices, including 
wearable, environmental, or medical sensors, 
collect real-time biometric and physiological 
data, continuously updating the virtual model. 
	 •	 Cloud Computing: provides scalable 

storage and management of healthcare data 
with encryption and privacy safeguards. 

	 •	 Artificial Intelligence and Machine 
Learning (AI/ML): enable advanced data 
analysis, identify complex clinical patterns, 
develop personalised predictive models, 
dynamically adapt DT behaviour, and 
support clinical decision-making. 

	 •	 Modelling, Simulation, and Visualisation 
Systems:  software tools generate virtual 
representations and allow interactive 
exploration of the DT.2,8
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Data Sources
Healthcare DTs integrate multiple complementary 
data sources: 
	 •	 Structured Clinical Data: electronic 

health records, lab reports, diagnostic 
imaging, insurance documentation, and 
pharmacological records. 

	 •	 Digital Health Devices: smartwatches, 
connected glucometers, wearable/
implantable/ingestible sensors capturing 
real-time physiological, biological, and 
behavioural parameters. 

	 •	 Patient-Reported Data: self-assessments, 
questionnaires, and symptom reports. 

	 •	 Real-World Data: observational studies 
and disease registries providing evidence 
outside controlled clinical trials. 

	 •	 Non-Clinical Data:  environmental and 
lifestyle factors, such as air quality, 
consumption habits, and social media 
activity, contextualizing patient behaviour.2

 
Logical Architecture and Representation Models 
of the Digital Human Twin 
DTs can be modelled at varying levels of 
complexity, from the entire human organism to 
specific systems (e.g., digestive or respiratory), 
individual organs (e.g., the liver), or microscopic 
components such as tissues, cells, organelles, 
and even molecular structures. Disease-specific 
twins, such as a digital liver affected by non-
alcoholic fatty liver disease, or models simulating 
interactions with external agents like viruses, 
also fall within this spectrum.
	 Composite DTs integrate multiple models to 
provide a systemic, multiscale representation 
of the biological subject.  Instance Twins are 
identical digital copies of a single individual, used 
to test alternative clinical scenarios and compare 
therapeutic strategies.   Aggregate Twins group 
in  multiple  instances across  families, cohorts, 
or populations-supporting large-scale and 
epidemiological analyses. 
	 The enabling technologies form the foundation 
of the DT architecture, which is structured around 
three core components: the physical entity, 
the virtual model, and the digital thread.  The 
virtual twin is developed through advanced 
computational modelling tools, while continuous 
connection to the physical counterpart is 
ensured by the IoT. Interactions occur across 
multiple scales, integrating multimodal data-
genetic, molecular, environmental, social, 
radiological, and clinical-throughout the 
individual’s lifetime. The long-term vision for 
healthcare DTs envisions continuously updated, 

personalised models evolving dynamically 
with  new  measurement, test, or behavioural 
change. Such models could integrate genetic, 
physiological, environmental, and psychosocial 
data to chronically enable predictive, preventive, 
and personalised medicine, particularly in disease 
management.9

DT vs. Traditional Predictive Models 

Traditional clinical prediction relies on statistical 
inference, deriving general conclusions from 
limited datasets. Regression models, linear 
or logistic, are commonly used to estimate disease 
risk, treatment efficacy, or clinical outcomes 
based on predefined mathematical assumptions 
such as linearity, normal error distribution, and 
independence among observations. These models 
are interpretable and robust under ideal conditions 
but struggle with big data environments 
characterised by high dimensionality and 
complex variable interactions. 
	 Machine Learning (ML) offers a more 
flexible alternative. As a branch of Artificial 
Intelligence, ML algorithms autonomously learn 
patterns and generate predictions from complex, 
heterogeneous datasets, identifying relationships 
often undetectable by traditional methods. The 
DT synthesises two complementary paradigms: 
	 •	 A deductive (mechanistic) approach, based 

on theoretical and mathematical models 
describing human physiology across 
scales, from molecular to systemic levels. 

	 •	 An inductive (data-driven) approach, typical 
of ML, where models  emerge  directly 
from data and adapt to individual patient 
characteristics. 

This hybrid framework allows the DT not only to 
mirror a patient’s clinical state but also to predict 
health trajectories, simulate disease progression, 
and  optimise  therapeutic decisions. Thus, the 
DT functions as a predictive, adaptive system, 
supporting personalised clinical management 
throughout the entire care continuum, from early 
risk detection to treatment evaluation.5

 
DTS IN CLINICAL RESEARCH: ETHICS, 
EFFICIENCY, AND INNOVATION 

Fundamentals of Clinical Research 

Clinical research is essential for advancing 
biomedical knowledge, generating reliable 
evidence on the efficacy, safety, and therapeutic 
value of new interventions. It follows a 
structured, phased approach: 
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	 •	 Phase I primarily  assess  tolerability and 
pharmacokinetics in a small cohort, often 
healthy volunteers, to  determine  the 
maximum tolerated dose and identify acute 
adverse reactions. 

	 •	 Phase II evaluates therapeutic activity
		  and safety in a targeted patient population,
		  optimising dosage for subsequent trials. 
	 •	 Phase III tests clinical efficacy against 

standard therapy or placebo in large, 
multicenter, randomised controlled trials, 
producing data critical for regulatory 
approval. 

	 •	 Phase IV, or post-marketing surveillance, 
		  monitors  long-term real-world use, 

rare adverse events, and comparative 
effectiveness across broader populations. 

Each phase adheres to internationally recognised 
ethical standards emphasising participant safety, 
protocol transparency, and scientific rigor. The 
integration of advanced biotechnologies and 
information systems has enabled the design 
of more targeted, efficient, and clinically 
representative trials.10

Introduction to the Use of DTs in Clinical 
Research 

DTs hold significant potential for transforming 
clinical research. Approximately 80% of 
clinical trials experience enrolment delays, and 
20% fail to meet recruitment targets, largely due 
to challenges in identifying suitable participants 
and the increasing focus on personalised 
medicine, which narrows eligible populations. 
These factors make traditional trials increasingly 
costly and time-consuming. 
	 DTs offer an innovative solution by creating 
virtual replicas of real patients, enabling in 
silico experimentation with multiple therapeutic 
strategies. Such digital counterparts can function 
as control groups, allowing early drug testing 
in simulated environments while reducing both 
patient risk and study costs. Unlike traditional 
external controls based on historical or real-world 
data, DTs provide individualised predictions, 
estimating each patient’s outcome had they been 
assigned to the control arm. 
	 From an ethical standpoint, DTs may also 
address issues arising in comparative trials, 
especially when the experimental treatment is 
potentially lifesaving, and a placebo or standard 
therapy offers limited benefits. By replacing 
or supplementing control groups, DTs could 
preserve trial validity while avoiding patient 
exposure to ineffective or harmful treatments.  

Although still in its  early stages, preliminary 
evidence suggests that DT-supported trials 
could effectively address the main challenges 
of clinical research, enabling the design of 
smaller-scale studies with greater statistical 
power, or recovering power in ongoing trials 
affected by recruitment difficulties or high 
dropout rates.2,6,11,12

  
Limitations of Public Documentation on DTs 

To date, no publicly available case reports 
describe the use of individualised DTs as 
control arms supported by detailed quantitative 
data. This lack of transparency stems from 
multiple factors. Pharmaceutical companies 
have  initiated advanced DT projects, but most 
results  remain  confidential due to industrial 
secrecy or ongoing pilot phases lacking full 
validation. In many cases, DTs are used 
internally for strategic purposes, such as dosage 
optimisation, adverse event prediction, or 
clinical planning, without formal publication. As 
a result, available documentation focuses 
primarily on general technological descriptions 
rather than quantitative evidence or direct 
comparisons with real-world cohorts. Given 
this context, the following section illustrates 
a representative study that, while not a fully 
individualised DT implementation, marks a 
concrete step toward their clinical adoption. 
Here, the term  DT  is used broadly to denote 
the statistical simulation of virtual cohorts 
derived from real-world data through predictive 
modelling. The study demonstrates the feasibility 
and adds value of integrating real-world evidence 
and artificial intelligence to construct robust 
synthetic control arms. While these results cannot 
yet be generalised to fully personalised DTs, 
they highlight a promising trajectory toward 
individualised, data-driven clinical trial design.13

Construction of a Synthetic Control Arm Using 
DTs: The Case of Chronic Graft-versus-Host 
Disease 

Phesi, a company specialising in real-world 
data analytics and predictive modelling, 
developed a synthetic control arm (SCA) for 
patients with chronic Graft-versus-Host Disease 
(cGvHD), a long-term complication of allogeneic 
haematopoietic stem cell transplantation 
characterised by donor immune cell attacks on 
host tissues. Standard first-line therapy involves 
systemic corticosteroids, with 40–60% response 
rates and significant side effects. Given the 
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complexity of  cGvHD, patient heterogeneity, 
and recruitment challenges, it represents an ideal 
setting for DT-based trial innovation. 
	 The study aimed to simulate the efficacy of 
prednisone as standard therapy through virtual 
DT cohorts, thereby  eliminating  the need for 
new control-group recruitment. Using the Trial 
Accelerator™ platform-containing data on over 
61 million patients across 232,909 cohorts-
Phesi  identified  2,042 patients with newly 
diagnosed cGvHD who received systemic first-
line therapy. After data refinement, eight eligible 
cohorts totalling 438 patients were included.  
Efficacy was assessed via the six-month Overall 
Response Rate (ORR),  representing  complete 
plus partial responses. The mean ORR was 
52.7%, ranging from 48% to 66% across cohorts, 
with no statistically significant differences 
between groups (χ² = 4.66; p = 0.70). These 
findings aligned closely with published real-
world data, which reports ORR values for steroid 
therapy in  cGvHD  generally ranging  between 
40% and 60%, confirming the validity of the 
synthetic approach.13

  
Methodological Validation of the Synthetic Arm 
The study’s primary objective was methodological: 
to assess whether a virtual cohort, aggregated 
from heterogeneous real-world sources, could 
replicate the reliability of a traditional randomised 
control group. Despite using real clinical data, 
this equivalence is not guaranteed, as real-world 
datasets often suffer from inconsistencies, 
missing information, and selection bias.  
Building a “clean” synthetic arm that mirrors the 
rigor of randomised trials requires standardised 
endpoints, harmonised inclusion criteria, and 
correction of temporal and geographic variability. 
Here, artificial intelligence proved essential, 
enabling automated patient identification, 
data harmonisation, and construction of a 
homogeneous, statistically valid synthetic 
population comparable to conventional trials.
 	 The study thus  demonstrates  the feasibility 
of developing highly realistic synthetic control 
arms using high-quality historical clinical data. 
DTs emerge as ethical and efficient alternatives 
to traditional placebo groups, particularly in 
rare diseases where recruitment is challenging. 
The strong concordance between simulated and 
real-world outcomes suggests that,  in the near 
future, DT-based synthetic controls could gain 
regulatory acceptance as valid tools for clinical 
trial design and evaluation.13

  

Unlearn.AI: DT Generators 

Unlearn.AI is a leading  company that  applies
artificial intelligence to clinical medicine, 
aiming to transform the design and conduct 
of clinical trials via DT technology. Its Digital 
Twin Generators (DTGs) are advanced predictive 
models designed to simulate the individualised 
clinical trajectory of each patient. 
	 DTGs are trained on patient-level data 
from historical clinical trials and real-world 
evidence, encompassing a wide range of clinical 
variables, including biomarkers, demographics, 
vital signs, symptomatology, and disease 
progression.  Essentially, DTGs  are predictive 
models built on large datasets of prior control-
group patients and comparable observational 
data. 
	 Given the complexity of biological systems, 
no universal model exists; each DTG is disease-
specific, tailored to accurately  represent  the 
clinical dynamics of conditions such as 
Alzheimer’s disease, amyotrophic lateral 
sclerosis, Parkinson’s disease, Crohn’s disease, 
or type 2 diabetes. Upon enrolment in a trial, 
baseline clinical data of a new patient (history, 
imaging, physiological parameters) are collected. 
The DTG then predicts the patient’s potential 
clinical course under standard-of-care or no 
intervention. 
	 Experimentally, the patient’s DT can serve 
as a synthetic control: while the real patient 
receives the investigational treatment, the 
twin simulates disease progression without 
intervention. Comparing actual and predicted 
outcomes allows assessment of treatment efficacy 
without a traditional placebo group.14,15

  
The PROCOVA™ Methodology 
Unlearn.AI developed PROCOVA™ (Prognostic 
Covariate Adjustment), a statistical adjustment 
strategy enhancing traditional analyses by 
incorporating a powerful covariate: the 
prognostic score.   First, baseline data are used 
to construct each patient’s DT, simulating the 
hypothetical outcome under the control condition 
(placebo or standard therapy). This generates 
a prognostic score  representing  the expected 
outcome in the absence of active treatment.
	 During the statistical analysis phase, the 
prognostic score is included as a covariate within 
a traditional regression model. This allows the 
estimated treatment effect to be adjusted for 
each participant’s individual prognosis. For 
instance, if a patient was already expected, based 
on their baseline characteristics, to achieve a 
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favourable outcome regardless of treatment, the 
inclusion of the prognostic score prevents this 
improvement from being incorrectly attributed 
to the experimental intervention. Conversely, 
if a patient was “predicted” to deteriorate 
but instead shows substantial improvement, 
the observed change can be attributed to the 
treatment with greater confidence.   Prognostic 
scores explain a substantial  portion  of natural 
outcome variability, reducing background noise 
and isolating treatment effects more clearly. This 
improves statistical efficiency, enabling trials 
with fewer patients to achieve equivalent power 
or, at equal sample sizes, increasing the ability 
to detect genuine therapeutic effects.14

 
Regulatory Validation by EMA and FDA 
In September 2022, the PROCOVA™ metho-
dology  received official qualification from 
the European Medicines Agency (EMA) for 
use as a primary analysis method in Phase II 
and III clinical trials with continuous clinical 
endpoints. In January 2024, Unlearn.AI also 
received positive feedback from the U.S. FDA’s 
Center for Drug Evaluation and Research 
(CDER), confirming alignment with the EMA 
assessment. The FDA recognised PROCOVA™ 
as compliant with current guidelines, deeming it 
an accepted statistical  methodology  under 
both EMA and FDA regulations. These 
endorsements represent authoritative validation 
of PROCOVA™’s scientific and regulatory 
value, confirming it as one of the most advanced 
statistical solutions currently available to 
enhance clinical trial efficiency and accuracy.14  

Operational Advantages of Integrating DTs in 
Clinical Trials 

The implementation of DTs in clinical research 
offers substantial operational benefits across trial 
design and execution: 
	 •	 Reduction in patient enrolment. By 

simulating individual patient trajectories 
without intervention, DTs reduce the need 
for recruiting patients into control arms, 
lowering logistical burden, operational 
costs, and ethical concerns related to 
placebo or suboptimal treatments. 

	 •	 Increased statistical power. The comparison 
between the outcome observed in the real 
patient and that simulated by their DT 
allows for a reduction in inter-individual 
variability. This enhances the ability to 

detect clinically meaningful differences 
even in smaller sample sizes. Alternatively, 
it enables an increase in study power at a 
given sample size, thereby improving the 
efficiency of evidence generation. 

	 •	 Optimisation of inclusion/exclusion 
criteria. The ability to simulate different 
population configurations allows for 
the early identification of the most 
relevant clinical characteristics, thereby 
improving participant selection. This 
targeted approach increases the likelihood 
of obtaining clinically and statistically 
significant results, while reducing 
heterogeneity and enhancing the quality 
of the study design. 

	 •	 Improved Multiple Ascending Dose 
(MAD) studies.  Early-phase studies 
are  required  to  identify  the maximum 
tolerated dose (MTD) and define 
t he   op t ima l   t he rapeu t i c  r ange 
for  subsequent  phases of development. 
DTs enable  the  v i r tua l  tes t ing 
of individual responses to different 
doses,  identifying  tolerability thresholds 
and signalling potential adverse events 
before they  occur in reality. Evidence 
generated from DTs can  provide  robust 
guidance on whether to  proceed  with 
drug development or to  terminate  the 
experimental program early, thereby 
limiting participants’ exposure to 
unnecessary risks and containing overall 
study costs. 

	 •	 Enhanced trial ethics. All patients receive 
the experimental treatment without 
being exposed to suboptimal therapies 
or placebo, enhancing the fairness of 
clinical trials. This increases study 
appeal, facilitates patient recruitment, and 
improves overall trial equity. 

	 •	 Time and cost efficiency. Robust,
		  validated  virtual populations reduce 

the need for large real-world control 
arms, accelerating trial phases, lowering 
administrative burden, and bringing 
innovative treatments to patients sooner. 

	 •	 Accelerated and adaptive clinical research. 
DTs  facilitate  timely  interim analyses, 
disease progression modelling, and 
dynamic protocol adaptation based on 
emerging data.6,11,12,14,16
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INTEGRATING DT INTO PERSONALISED
MEDICINE AND MEDICAL AFFAIRS: 
A STRATEGIC AND SCIENTIFIC 
OPPORTUNITY 

Personalised Medicine: Context and Potential 

Personalised medicine is an emerging paradigm 
aimed at delivering the right treatment to the right 
patient at the right time,  leveraging diagnostic 
and therapeutic tools tailored to an individual’s 
genetic, phenotypic, biomolecular, physiological, 
and psychosocial characteristics. Unlike 
conventional medicine, which relies on 
generalised approaches, precision medicine 
emphasises interindividual variability, enhancing 
treatment  efficacy,  and overall healthcare 
efficiency.  However, current healthcare systems 
often struggle to provide truly personalised 
care, particularly in complex conditions such as 
oncology, where diagnosis and treatment involve 
multiple layers and high clinical heterogeneity. A 
key challenge lies in the variability of therapeutic 
response among patients sharing the same 
diagnosis. This heterogeneity largely reflects the 
discrepancy between the underlying biological 
complexity, characterised by dysfunctional 
interactions among thousands of genes that 
vary significantly between individuals despite 
identical diagnoses, and the current diagnostic 
capacity, which remains limited to a small number 
of biomarkers. Consequently, a single diagnostic 
label may conceal diverse therapeutic needs.8,17  

DTs in Precision Medicine 

DTs can predict disease onset dynamically, 
considering not only patient history but also 
contextual factors such as environment, 
time, and activities,  facilitating  a predictive 
and personalised approach.     They also 
serve as decision-support tools, allowing 
virtual simulation of multiple therapeutic 
options to  optimise  treatment  selection. A 
comprehensive DT-based precision medicine 
model involves  identifying  a patient-specific 
pathological signal, generating multiple virtual 
replicas integrating thousands of clinically relevant 
variables, and testing various therapeutic scenarios. 
The optimal treatment identified virtually is then 
applied to the patient, enabling a scientifically 
guided, individualised intervention.2,7,8,9

Oncology: Optimising Therapy in Triple-
Negative Breast Cancer 
A study published in  NPJ Digital Medicine

demonstrated that MRI-based DTs can optimise 
neoadjuvant chemotherapy regimens in patients 
with triple-negative breast cancer (TNBC).18 The 
study included 105 patients, each represented 
by an individual DT. Model validation involved 
comparing predicted treatment responses with 
actual clinical outcomes. The model’s ability 
to discriminate between two clinical outcomes-
complete pathological response (pCR) versus non-
response following chemotherapy-was assessed 
using a ROC curve. Model performance was 
quantified by the Area Under the Curve (AUC), 
which reached 0.82 in this study, indicating high 
predictive accuracy and suggesting that the model 
can provide reliable and clinically meaningful 
predictions of individual therapeutic response. 
DTs were further used to simulate 128 alternative 
clinically plausible chemotherapy combinations 
(Adriamycin/Cyclophosphamide followed by 
Taxol, A/C-T). While the observed  pCR  was 
60.95%, DT-guided simulations suggested 
alternative regimens could achieve pCR up to 
85.71%, representing an absolute improvement 
of 24.76%. Notably, 26 patients who did 
not achieve  pCR  with standard therapy 
were identified as potentially  benefiting  from 
personalised regimens.18

Broader Clinical Applications 
While oncology provides an ideal context to 
exploit the predictive power of DTs, their use 
is expanding across multiple clinical domains, 
highlighting their versatility and translational 
value. 
	 In cardiology, DTs simulate cardiac 
electrical and mechanical activity, supporting 
ablation planning,  selection  for implantable 
devices, and arrhythmia risk assessment.  In 
neurology, they predict the progression of 
neurodegenerative diseases such as Alzheimer’s 
and multiple sclerosis and optimise antiepileptic 
treatments. For chronic conditions like diabetes, 
DTs enable continuous glucose monitoring and 
real-time insulin dose adjustment, enhancing 
patient self-management,  and reducing 
complications. In rehabilitation, DTs personalise 
motor recovery protocols based on patient-
specific musculoskeletal responses. In surgery, 
DTs allow the simulation of complex operative 
scenarios, improving procedural planning, and 
reducing complications. 
	 DTs are also proving highly valuable in clinical 
pharmacology and pharmacovigilance, enabling 
the prediction of drug-related adverse events. A 
notable example is the liver DT, constructed using 
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mathematical models that integrate anatomical 
and physiological knowledge with clinical and 
pharmacological data. This model has been 
employed to assess the risk of drug-induced 
liver injury (DILI), providing  an important 
tool to support both drug development and post-
marketing safety monitoring.
 	 Across these applications, DTs enable a shift
from standardised to truly personalised 
medicine,   anticipating, adapting, and
optimising  clinical decisions based on each 
patient’s unique profile. Computationally 
validated models that  identify  potentially 
more effective treatments for specific patient 
subgroups also offer strategic insights for the 
pharmaceutical industry, particularly in Medical 
Affairs, bridging scientific innovation and 
clinical practice.5,8,9  

Implementation of DTs in Medical Affairs: 
Impacts and Opportunities 

Medical Affairs has emerged as one of the most 
dynamic and strategically relevant functions 
within pharmaceutical organisations, acting 
as a critical bridge between research, clinical 
practice, and patient needs. This evolution 
reflects a broader transformation toward 
evidence-based, personalised, and technology-
integrated healthcare systems. In this context, 
Medical Affairs serves as a catalyst for scientific 
translation, converting data into actionable 
clinical insights.
	 In an era of data complexity and personalised 
medicine, its strategic influence is expected to 
grow further. Within this evolving landscape, 
DTs offer significant potential to enhance the 
impact of Medical Affairs, although their current 
application in this domain  remains at an early 
developmental stage.19,20 

Optimising Evidence-Based Strategies 
The integration of DTs  represents  a 
methodological breakthrough in evidence-
based medicine, enhancing the capacity to 
guide clinical, regulatory, and corporate 
decision-making through transparent, validated, 
and data-driven insights.  These simulations 
enable the generation of an advanced form 
of real-world evidence (RWE), data derived 
from unselected, often more heterogeneous 
populations than those enrolled in registration 
trials, thereby reflecting the complexity of real 
clinical practice. The use of DTs allows for the 
integration and expansion of evidence obtained 

from traditional studies, extending analyses 
to patient groups  frequently  excluded from 
experimental protocols, such as the elderly, 
frail individuals, or those with comorbidities. 
Moreover, by digitally  modelling  specific 
subgroups, Medical Affairs can  identify  early 
on the patient profiles most likely to respond 
favourably, or to experience reduced tolerance, 
to a given therapy, thereby providing concrete 
support for treatment personalisation and clinical 
appropriateness. 
	 Furthermore, DT-based simulations can 
explore alternative therapeutic scenarios, 
such as variations in drug sequencing, dosing, 
or combinations, that are ethically or logistically 
unfeasible in traditional trials. When aligned 
with scientific and corporate strategies, this 
predictive capability provides a competitive 
advantage, supporting the design of more 
targeted, sustainable, and patient-centred studies. 
	 In essence, DT  adoption transforms the 
notion of evidence-based strategy from a static, 
retrospective framework into a proactive, 
adaptive, and predictive model, capable of 
generating real-time, patient-specific clinical 
value. 

Personalising Scientific Communication 
In the context of precision medicine, personalising 
scientific communication has become a key 
strategic goal for Medical Affairs. DTs enable 
the virtual representation of patient-specific 
biological and clinical profiles, allowing the 
creation of dynamic, data-driven scenarios that 
illustrate treatment effects on individualised 
cases. These simulations enhance scientific 
materials and discussions by highlighting 
differences in efficacy, safety, or tolerability 
that are often obscured in aggregated trial 
data. As a result, Medical Affairs can enhance 
scientific dialogue with healthcare professionals, 
strengthen credibility as a trusted scientific 
partner, and convey complex data as intuitive, 
context-driven insights, particularly valuable in 
engagements with Key Opinion Leaders (KOLs) 
and institutional stakeholders.
	 This approach proves particularly effective 
in advisory boards and multidisciplinary 
scientific discussions, where the availability 
of interactive models fosters stakeholder 
engagement,  facilitates  debate on clinical 
rationales, and promotes shared reflection on 
potential therapeutic implications. DTs thus go 
beyond their role as analytical tools, becoming 
advanced communication mediators capable of 
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conveying scientific content with greater impact 
and clinical relevance. 
	 In summary, integrating DTs into Medical 
Affairs communication strategies allows a 
shift from standardised information delivery to 
personalised, interactive, and patient-relevant 
scientific dialogue. 

Clinical Decision Support 
In an era marked by clinical uncertainty, 
interindividual variability, and the proliferation 
of heterogeneous data, personalised decision 
support has become a central challenge for 
healthcare professionals.  
	 The application of DTs by Medical Affairs 
proves especially valuable in complex cases, 
such as frail, multimorbid patients or those 
underrepresented in clinical trials, where 
predictive models can: 
	 •	 I d e n t i f y   t h e  m o s t   a p p r o p r i a t e 

therapeutic strategy when clinical evidence 
or guidelines are lacking

	 •	 Anticipate treatment efficacy and estimate 
the likelihood of adverse events or 
drug interactions, enabling comparative 
assessment of multiple therapeutic options

	 •	 Dynamically adapt therapeutic pathways 
based on real-time clinical evolution 

Through this approach, Medical Affairs evolves 
from a passive repository of information to an 
active mediator between data science and clinical 
practice, translating DT-generated simulations 
into actionable, scientifically validated insights. 
This model establishes an advanced, evidence-
based framework for precise and adaptive clinical 
decision-making. 
  
Contribution to Corporate Strategy 
Therapeutic innovation advances rapidly, 
demanding a sophisticated understanding of the 
clinical and regulatory landscape.  Within this 
framework, Medical Affairs plays a pivotal role 
in guiding corporate strategy, and DTs emerge as 
high-value tools to support informed, evidence-
driven decisions through predictive simulations, 
comparative analyses, and realistic modelling of 
therapeutic responses. 
	 By integrating and analysing heterogeneous 
data sources, such as real-world evidence, 
genomics, imaging, and digital patient profiles, 
DTs enable: 
	 1.	 Precise definition of target patient 

populations and identification of 
subgroups most likely to derive maximal 
therapeutic benefit. 

	 2.	 Early prediction of differential efficacy 
across population segments, supporting 
evidence-based competitive positioning 
and strategic development planning.

	 3.	 Identification of new therapeutic 
opportunities, including off-label or 
adjacent disease areas  emerging  from 
simulated response patterns.

	 4.	 Exploration of potential  indication
		  extensions based on simulated evidence, 

guiding targeted clinical study design 
and  providing a robust rationale for 
regulatory submissions. 

Furthermore, DTs allow the simulation 
of alternative sequencing or combination 
strategies,  optimising  product use across its 
lifecycle. This capability supports launch planning, 
pipeline prioritisation, and the development 
of differentiated, scientifically grounded 
communication strategies—strengthening both 
clinical and corporate value creation. 

Competitive Differentiation and Innovation 
Positioning 
The strategic integration of DTs within Medical 
Affairs functions as a catalyst for competitive 
differentiation and innovation leadership in 
the biomedical sector. By  leveraging  DTs, 
pharmaceutical companies position themselves 
at the forefront of digital and personalised 
medicine, demonstrating a tangible commitment 
to predictive, patient-centred care.   Moreover, 
DT-based simulations enhance the credibility 
of products and therapeutic positioning, even 
where traditional clinical evidence is limited 
or immature. Presenting simulated data on 
realistic patient profiles with individualised 
response predictions supports clinical rationales 
more authoritatively, differentiates the value 
of the molecule, and enables persuasive, 
scientifically grounded communication of 
treatment benefits. In sum, adopting DTs is not 
merely a technological choice but a strategic tool 
for scientific branding, reinforcing innovation 
identity, consolidating market position in digital 
health, and generating reputational value. 

LIMITATIONS, CHALLENGES, AND 
ETHICAL IMPLICATIONS OF DT 
IMPLEMENTATION IN HEALTHCARE 

Technological and Operational Challenges 

Intrinsic Complexity of Human Biology 
Unlike mechanical systems with well-defined 
components and standardised designs, the 



Malays J Pathol December 2025

364

human body is a highly complex and dynamic 
system.  Everyone  exhibits  a unique health 
profile shaped by interactions among genetic, 
environmental, behavioural, and stochastic 
factors, combining in unpredictable ways. 
Developing high-quality predictive models 
requires advanced computational architectures 
capable of simultaneously representing multiple 
interdependent clinical features and dynamically 
adapting to physiological changes over time. 

Data Acquisition and Integration 
A major barrier to clinical translation and 
operational deployment of DTs in healthcare 
is the acquisition of  accurate, synchronised, 
and multimodal data. Potential sources include 
electronic health records (EHRs), diagnostic 
imaging, wearable devices, biosensors, and 
genomic databases. However, these data are 
often stored across heterogeneous platforms 
with incompatible formats and structures. This 
IT heterogeneity complicates interoperability 
between systems, namely the ability to enable 
coherent and secure communication among 
diverse information sources. Challenges also 
extend to the temporal synchronisation of 
data streams, particularly when real-time 
integration of continuous physiological signals 
or dynamic clinical updates is  required. The 
lack of adequate IT infrastructure and shared 
standards further  exacerbates  operational 
difficulties, hindering the development of reliable 
and timely updated digital models. 

Data Quality and Accuracy 
Beyond availability and integration, data 
quality is critical for the efficacy of healthcare 
DTs. Incomplete, fragmented, or inaccurate 
data undermine model validity, leading 
to misleading simulations and unreliable 
predictive analyses. Quality issues may arise 
from sensor malfunctions, background noise in 
signal acquisition, or semantic inconsistencies 
across datasets due to differing collection 
protocols or coding systems. Longitudinal 
patient data are especially important, as they 
enable the DT to adapt to individual clinical 
trajectories. However, such data are often 
sparse, heterogeneous, or temporally incomplete. 
Ensuring high standards of accuracy, consistency, 
and traceability is therefore essential to support 
robust, updatable, and clinically meaningful 
predictive models. 

Lack of International Standardisation 
The widespread adoption of DTs in healthcare 

is hindered by the absence of globally accepted 
standards for their design, implementation, 
validation, and interoperability. Most DTs are 
developed in isolated academic or industrial 
settings, using their own formats and criteria, 
limiting scalability, replicability, and cross-
institutional transfer.  
	 Semantic and terminological inconsistencies, 
such as heterogeneous clinical coding (ICD, 
SNOMED CT, LOINC) further impede system 
integration.    International multi-stakeholder 
initiatives involving regulators, healthcare 
institutions, industry, academia, and civil 
society are urgently needed. Organisations 
such as  the Digital Twin Consortium,  the 
Swedish Digital Twin Consortium, and the 
European  DigiTwins  project  are advancing 
in this direction, but a global, healthcare-
specific standardisation framework remains 
to be  established. Shared frameworks 
w o u l d   f a c i l i t a t e   D T d e v e l o p m e n t , 
ensure transparency, enhance safety, and 
promote equitable use. 

Limitations in Methodological Transparency 
Methodological transparency remains a critical 
limitation for DTs in healthcare. Many models 
rely on opaque machine learning or deep learning 
algorithms (“black boxes”), making it difficult for 
clinicians or researchers to interpret the rationale 
behind predictions. Documentation on algorithm 
structure, training datasets, validation metrics, 
and update procedures is often incomplete or 
absent, undermining reproducibility, verification, 
and external review. Moreover, scientific 
validation is  frequently  limited to small 
experimental cohorts, lacking robustness for 
real-world clinical  applications. The absence 
of a standardised framework for predictive 
and clinical validation also impedes regulatory 
approval and safe clinical adoption. 
 
Legal, Ethical, and Governance Considerations 

Data Privacy and Security 
Healthcare DTs rely on large volumes 
of  highly sensitive  personal data, including 
medical history, diagnostic results, real-
time physiological parameters, genetic and 
behavioural information.  Ensuring access to 
the health data  required  for DT functionality 
without compromising privacy is a major 
challenge. Healthcare DT infrastructures involve 
the collection, analysis, and storage of sensitive 
personal information, which exposes data to 
potential unauthorised access, security breaches, 
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or misuse. Informed consent is critical: patients 
must fully understand the implications, risks, 
and purposes of sharing their data. Transparent 
consent processes, compliant with regulations 
such as the EU  General Data Protection 
Regulation  (GDPR) and the US  Health 
Insurance Portability and Accountability 
Act  (HIPAA), are necessary to  maintain  trust. 
Users should  retain  control over their data, 
including the ability to limit sharing or withdraw 
consent. Advanced security measures, such as 
data encryption, secure storage and transmission, 
and controlled access systems, are indispensable. 
Establishing a secure, compliant digital 
environment is crucial to safeguard data integrity 
and ensure confidence in healthcare DT systems. 

Data Bias and Health Equity 
Current healthcare datasets often exhibit
systematic biases reflecting historical and 
structural inequalities in medical research and 
healthcare access. Common sources include 
overrepresentation of specific demographic 
groups, such as adult Caucasian males, and 
underrepresentation of women, the elderly, 
ethnic minorities, children, or patients with 
complex comorbidities. Using non-representative 
datasets in constructing human DTs risks 
perpetuating these disparities, potentially 
producing suboptimal or discriminatory clinical 
recommendations. 

Medical Skepticism and Legal Liability 
Clinical adoption of DTs is hindered by physician 
scepticism toward algorithm-driven decisions, 
fuelled by concerns over diagnostic errors or 
inappropriate treatments. In the event of predictive 
or clinical errors, legal responsibility among 
developers, technology providers, clinicians, 
and institutions remains ambiguous. Clear legal 
frameworks are essential to define accountability, 
delineate roles, and  establish  obligations for 
all stakeholders involved in the development, 
validation, implementation, and clinical use 
of DTs. 

Redefinition of Normality and Risk of 
Overmedicalisation 
The adoption of DTs in healthcare enables  a 
paradigm shift  in defining normality and 
pathology by constructing high-resolution models 
of individual physiology, integrating molecular, 
phenotypic, behavioural, and environmental 
data across the lifespan. This longitudinal 
approach surpasses the limitations of sporadic 

measurements typical of traditional medicine, 
allowing a more precise characterisation of an 
individual’s “normal” parameters. 
	 Traditionally, normality has been population-
based, defined through statistical averages and 
reference ranges. DTs enable a personalised model 
in which normality is relative to the individual’s 
historical baseline. For example, continuous 
blood pressure monitoring via wearable 
devices may reveal circadian or lifestyle-related 
variations, defining an “individualised normality” 
that may deviate substantially from population 
standards. Such hyper-personalisation, while 
enhancing precision medicine, raises ethical 
and clinical concerns. Health may no longer 
be defined merely as the absence of clinically 
detectable disease but as  an adherence  to an 
individualised optimal functioning pattern. 
	 This gives rise to the category of asymptomatic 
disease, in which an apparently healthy individual 
could be identified, based on data from their DT, 
as being at high risk of developing a pathological 
condition. In this context, what is considered 
“normal” may be perceived as improvable, 
opening the door to a medicalised interpretation 
of human enhancement. Within a DT model, 
health itself may no longer be regarded as the 
absence of disease, but rather as a configuration 
within a spectrum of possibilities,  efficient  or 
“optimisable”.
 	 In this scenario, health risks are conceptualised 
not as a state of equilibrium but as a process of 
continuous optimisation, potentially generating 
implicit or explicit social pressures to intervene 
on physiological states that are fully compatible 
with normal life. For example, an  apparently 
healthy  individual with a high genetic 
predisposition to a disease (e.g., Alzheimer’s 
in ApoE-4 carriers) could be labelled as “at-risk” 
even in the absence of symptoms. This may 
lead to anxiety, overdiagnosis, and preventive 
interventions that are not always justified. From 
a psychological perspective, it can significantly 
affect self-perception, self-esteem, and mental 
health. It is therefore essential to provide support 
resources, such as psychological counselling, to 
help individuals manage the emotional impact of 
such detailed and evolving knowledge of their 
health status.2,6,7,9,21 

DISCUSSION 

Clinical Research and DTs: Between Simulated 
Efficiency and Complex Reality. 
The integration of DTs into clinical research 
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promises to address structural inefficiencies 
such as recruitment delays, rigid protocols, high 
costs, and ethical challenges related to placebo 
use. However, this pursuit of efficiency 
risks  oversimplifies  experimental complexity. 
Predictive models, however advanced,  remain 
in  theoretical constructs rooted in historical 
and selective data. Introducing synthetic control 
arms into clinical settings effectively assigns 
evidentiary value to outcomes that have not 
occurred but are algorithmically generated. 
Consequently, the very notion of evidence shifts 
from the observation of clinical phenomena to 
their plausible projection. The central challenge 
is thus epistemological rather than technical: how 
can medicine validate what has not happened but 
holds predictive significance? How can fairness 
and transparency be maintained when comparison 
occurs not between real patients but between 
lived experiences and digital simulations? The 
future of clinical experimentation will hinge 
on this tension between the  verifiable  and 
the credible. 
  
Toward a Medicine of Possibilities: Regulatory 
and Narrative Implications 
DTs function not merely as predictive technologies 
but as generators of clinical possibilities, 
simulating outcomes that, though unrealised, 
can shape therapeutic and regulatory decisions. 
In this emerging paradigm, the boundary 
between observable evidence and hypothetical 
scenarios becomes blurred. Regulatory bodies 
and clinicians will increasingly face the 
challenge of distinguishing between empirical 
evidence and simulated prediction. The validation 
of predictive models and the regulatory 
acceptance of synthetic trial arms extend beyond 
statistical soundness, implying  a paradigm 
shift: accepting algorithmic predictions as 
decision-grade evidence redefines the epistemic 
foundations of truth in medicine. This evolving 
conception of clinical truth also reshapes the 
physician-patient relationship. What is presented 
as personalisation may risk becoming adaptation 
to algorithmic logic rather than a genuine 
response to human complexity.  

Beyond Digital Replication: Between Apparent 
Personalisation and the Risk of Over-Prediction. 
Relying on DTs to continuously optimise clinical 
pathways may reduce diagnostic and therapeutic 
errors, yet it risks narrowing the space for 
unpredictability, ambiguity, and individual 
variability, core dimensions of human health.

	 A key paradox  emerges  although DTs aim 
to enable ultra-personalised medicine; they are 
inherently built upon standardised algorithmic 
structures. Patient data are quantified and 
compared against large databases, producing 
a form of “personalisation” that often reflects 
a recombination of known parameters rather 
than a genuine engagement with individual 
complexity. Consequently, precision may come 
to mean adherence to the model, rather than a 
deeper understanding of the person. 
	 The challenge ahead is not merely to refine the 
predictive power of DTs, but to design models 
capable of incorporating the unquantifiable, 
the patient’s narrative, clinical ambiguity, lived 
experience, and the essential uncertainty that 
has always characterised medical practice. 
Only by doing so can future medicine remain 
both technologically advanced and authentically 
human. 

Medical Affairs and DTs: From Scientific 
Validation to Cultural Mediation 
Traditionally,  the custodian of post-approval 
evidence, Medical Affairs is now called 
to  validate  predictive models, interpret 
simulations, and guide the transition toward 
data-driven medicine. This expanded role 
requires a profound cultural shift: it is no longer 
sufficient to communicate therapeutic efficacy; 
professionals must contextualise predictive 
outputs, discerning what is clinically plausible 
from what is computationally optimal. Medical 
Affairs becomes the mediator between the 
language of algorithms and that of clinicians. Its 
authority will increasingly depend not only on 
data quality, but on its ability to question model 
assumptions, recognise bias, and preserve the 
diversity and complexity of real-world clinical 
experience. 
  
CONCLUSION 

The DT paradigm in healthcare  emerges  at a 
pivotal moment in contemporary medicine: 
the shift toward predictive, adaptive, and 
personalised models, where digital data no 
longer merely accompany clinical practice but 
can  anticipate  decisions, shape perspectives, 
and sometimes guide therapeutic trajectories. 
The aim of this work has not been to celebrate 
these technologies, but to critically examine 
their significance, applications, limitations, and 
implications. 
	 In clinical research, DTs offer solutions 
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to well-known challenges: methodological 
complexity, recruitment difficulties, and the 
ethical dilemmas associated with placebo use. 
The creation of synthetic control arms, the 
simulation of personalised therapeutic responses, 
and the reduced reliance on purely observational 
data open compelling opportunities, but also 
new scientific responsibilities. Predictive 
value does not equate to clinical value, and 
reproducible simulations cannot replace real 
patient experiences. 
	 It is within this intermediate space, between 
algorithm and decision, that Medical Affairs 
assumes an increasingly central role, balancing 
innovation, evidence, and sustainability. Its 
evolution is both technical and cultural: Medical 
Affairs must interpret, integrate, and communicate 
predictive models while  maintaining  clinical 
coherence and methodological rigor. DTs position 
Medical Affairs as an active mediator between 
scientific complexity and clinical applicability, 
between digital models and therapeutic needs, 
between the language of data and the language 
of care. 
	 Yet, like any transformative technology, 
DTs carry structural, methodological, and 
ethical vulnerabilities. They  require  large, 
harmonized datasets, interoperable infra-
structures, and transparent, interpretable 
models. Challenges remain in data fragmentation, 
algorithmic opacity, and reproduction of biases in 
clinical datasets. Without critical and responsible 
management, simulation  of  risk perpetuating 
inequalities rather than addressing them. 
	 Adopting DTs also entails confronting a new 
epistemological landscape, from lived reality to 
modelled projections. Here, the personalisation 
promised by predictive models can become 
an algorithmic illusion, interpreting patients 
through statistical configurations rather than their 
unique individuality. The notion of normality is 
also redefined: no longer a population average, 
but a continuously  monitored,  optimised, and 
potentially medicalised individual trajectory. 
	 Ultimately, this  work offers a clear-eyed 
perspective on  innovative  but non-neutral 
technology. DTs are powerful transformative 
tools, yet they demand new competencies, 
nuanced responsibilities, and constant critical 
oversight. True progress will arise only if these 
technologies are integrated into a model of 
medicine that embraces complexity, relationality, 
and uncertainty. In the end, care cannot be 
reduced to a model-derived  prediction,  it is 
foremost a human encounter, grounded in trust, 

shared decision-making, and respect for patients’ 
values, fears, and preferences. 
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